

Agenda

- Understanding TGA and SDT techniques
 - Theory
 - Instrumentation
- Calibration & Verification
- Instrument & Method Considerations
 - Purge gas
 - Sample Pans
 - Sample Preparation
 - Maintenance
 - Experimental Setup
 - Experimental Methods

2

ĆТÀ

€́т́

What is Thermogravimetric Analysis (TGA)?

• TGA measures weight/mass change (loss or gain) and the rate of weight change as a function of temperature, time and atmosphere.

3

What TGA Can Tell You

- Thermal Stability of Materials
- Oxidative Stability of Materials
- Composition of Multi-component Systems
- Estimated Lifetime of a Product
- Decomposition Kinetics of Materials
- The Effect of Reactive or Corrosive Atmospheres on Materials
- Moisture and Volatiles Content of Materials
- Residue

Ċт́

Mechanisms of Weight Change in TGA	
 Weight Loss: Decomposition: The breaking apart of chemical bonds. Evaporation: The loss of volatiles with elevated temperature. Reduction: Interaction of sample to a reducing atmosphere (hydrogen, ammonia, etc.). Desorption. 	
 Weight Gain: — Oxidation: Interaction of the sample with an oxidizing atmosphere. — Absorption. 	
 All of these are kinetic processes (i.e. there is a rate at which they occur). 	C TA

5

DSC-TGA (SDT): The Technique

- Simultaneous DSC-TGA measures both heat flow and weight changes in a material as a function of temperature or time in a controlled atmosphere from room temperature to 1500°C.
- Information obtained allows differentiation between endothermic and exothermic events which have no associated weight loss (e.g., melting and crystallization), and those which involve a weight loss (e.g., degradation).

6

ĊтÀ

ĊтÀ

What Simultaneous DSC-TGA Can Tell You

- Thermal Stability of Materials
- Oxidative Stability of Materials
- Composition of Multi-component Systems
- Estimated Lifetime of a Product
- Decomposition Kinetics of Materials
- The Effect of Reactive or Corrosive Atmospheres on Materials
- Moisture and Volatiles Content of Materials
- Residue
- Transition Temperatures
- Heats of Fusion and Reactions
- Melting and Boiling Points
- 7 Heat capacity

TGA	Specifications		
		TGA 5500	TGA 550/50
	Temperature Range	Ambient to 1200°C	Ambient to 1000°C
	Hearting Rate Range	0.1 to 500°C/min (Linear) >1600°C/min (Ballistic)	0.1 to 100°C/min (Linear)
	Sample Weight Capacity	1000 mg	1000 mg
	Dynamic Weighing Range	1000 mg	1000 mg
	Baseline Dynamic Drift (50-1000°C)	< 10 µg	<50 μg
12			

SDT Specific	ations		
		SDT 650	
	Temperature Range	Ambient to 1500°C	
	Hearting Rate Range	0.1 to 100°C/min (Linear)	
	Sample Weight Capacity	200 mg	
	Baseline Dynamic Drift (50-1000°C) (1000°C t0 1500°C)	<50 μg <50 μg	
13			TA

Ċт́А

TGA Balance and Operation

- Null-balance principle operation
- Current is applied to the meter movement
- Amount of current applied is proportional to the weight change

TGA Furnace Options: Wire Wound Furnace

- Standard furnace for TGA 55 and 550
- Ambient to 1000 °C
- Linear controlled heating rates of 0.01 to 100 °C/min
- Ballistic heating rates >600 °C/min
- Exchangeable with EGA furnace

Flow rate Balance/Sample : 40/60 ml/min

ĊТÀ

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><text>

Calibration & Verification

General Calibration and Verification Guidelines

- Calibration
 - Use Calibration Mode
 - Calibrate upon installation
 - Re-calibrate if does not pass verification or if instrument setup is modified (see previous slide)

Verification

- Determine how often to verify data
- Run a reference material as a sample (in standard mode)
- Compare results vs literature values
- Re-calibrate if results are out of tolerance

22

Ċт́

Requirements Prior to Calibration

- The TGA pan should be cleaned prior to calibration procedures.
- The purge gas flow rate should be set (see flow rates according to furnace type). The flow rate should not deviate by more than +/- 5ml/min.
- Use high purity reference materials (>99.99%) for calibration

23

23

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item>

<text><list-item><list-item><list-item>

Calibration – Weight (Auto)	
Weight Image: Steady mg Balance is steady Image: Steady Image: Steady Image: Steady -5 -4 -3 -2 -1 0 1 2 3 4 5	
Auto Semi-Auto • Calibration ○ Verification ✓ Verify automatically after calibration Verification Criteria: Weight ± 0.10 % Pan Number Weight Calibration Fixture 1 11 345.022 mg Calibration Fixture 2 12 443.936 mg Start Calibration Fixture 3 13 1246.285 mg Schedule Status: Ready: Calibration Fixture 3 13 1246.285 mg	
26	TA

Calibration – Weight (Manual)	
Weight	
Auto Semi-Auto Calibrate Zero Range . 1. Place an empty pan of the same type and size as the sample pan, on the tare side of the balance. . 2. Place an empty sample pan on the loader . 3. Tare the empty sample pan by clicking Tare. It may take several minutes to complete the zero range. Tare	
Calibrate Weight Range Enter the mass of the calibration weight 1. Place a known weight in the sample pan then enter the weight in the box: 2. Click Calibrate to load the sample pan with the known weight and calibrate the weight range. It may take Calibrate Calibrate	
3. Place the Larger weight into the pan and enter the weight in the box 4. Click Calibrate to load the sample pan with the known weight and calibrate the weight range. It may take calibrate Calibrate	TA

€́т́́л́

ASTM E 1582 - Calibration of Temperature Scale for TGA

- The standard describes two methods by which the TGA can be calibrated for temperature; by melting point or magnetic transition. The most common approach for a TGA would be the magnetic transition approach
- Curie Point Temperature that temperature where the material loses its magnetic susceptibility - defined as offset point
- Paramagnetic a material that is susceptible to attraction by a magnet
- Temperature Calibration points are determined by comparing the measured melting onset temperature to the literature value
- TA Instruments software allows for up to 5 temperature calibration points
 - Generally, these should bracket the temperature range of interest for subsequent samples

29

Curie Temperature Reference Materials International Confederation for Thermal Analysis and Calorimetry (ICTAC) developed a set of six certified and traceable Curie temperature reference materials for the calibration of TGA – Alumel 153°C Nickel 358C - Ni83Co17 555°C 747°C - Ni63Co37 - Ni37Co63 931°C - Cobalt 1116.0°C The materials permit temperature calibration in about 200 °C intervals over the range of 150 to 1120 °C TA Instruments is the exclusive worldwide distributor for these Curie point materials 32 ĆтÀ

Calibration	– Temperature	
	Calibration Data 📣 Temperature Calibration	
	Temperature Calibration Setup	
	Pan Type Platinum (100 uL) v	
	Operator	
	Project	
	Notes	
	Insert Isothermal 0	
	Ramp 20 °C/min	
	Calibration Experiments	
	Reference Material Type Reference Temperature Lower Limit Upper Limit Pan Number	
	Add Experiment	
	Calibration Perform Verification after Calibration	
	Verification Perform Calibration if Verification fails	
	Vernication Cimena: Temperature ± 3 C	
	Verification Experiments	
	Nickel V Curie Point 358.2 258.2 458.2 1	
33	Add Experiment	(TA

Verification – Temperature
Experiments
📄 Design Run 👔 Design View (0) 🗟 Schedule
Run 1 in Design View
Sample
Sample Name
Pan Number 1
Standard Nickel ~
Pan Type Platinum (100 uL) v
Operator
Project
Notes
⊙ File Name C:IProgramDataITA InstrumentsITRIOS/DataIDefault tri
☆ Procedure
Test Temperature Verification ~
Name Temperature Verification
Template 🕃 Segments
No. Description
ir 1 Equilibria 258.2°C
34 97 2 bectromspred (h sou 0 %) 19 3 Barro 200 Chrinito 458 2° C

ĹΤ/

Calcium Oxalate "Standard" Analysis

- Although Calcium Oxalate is not generally accepted as a "Standard Material," it does have practical utility for INTRA-laboratory use
- Carefully control the experimental conditions; i.e. pan type, purge gases/flow rates, heating rate
- Particularly control the amount (~5mg) and the particle size of the sample and how you
 position it in the pan
- Perform multiple runs, enough to do a statistical analysis
- Analyze the weight changes and peak temperatures and establish the performance of YOU and YOUR instrument
- When performance issues come up, repeat the Calcium Oxalate analysis

43

43

Calcium Oxalate Decomposition $CaC_2O_4 \cdot H_2O(s)$ \rightarrow CaC₂O₄ (s) + H₂O (g) 1. step Calcium Oxalate Monohydrate Calcium Oxalate $CaC_2O_4(s)$ $CaCO_3(s) + CO(g)$ 2. step Calcium Oxalate Calcium Carbonate $CaCO_{3}(s)$ $CaO(s) + CO_2(g)$ 3. step Calcium Carbonate Calcium Oxide Ċт́́А

Calcium Oxalate Repeatability

	Trans	ition 1	Trans	ition 2	Trans	ition 3
	Wt Change	Peak Temp	Wt Change	Peak Temp	Wt Change	Peak Temp
Run #	%	°C	%	°C	%	°C
1	12.13	156.68	18.78	493.37	29.62	684.33
2	12.22	153.60	18.75	494.17	29.56	680.43
3	12.20	155.40	18.76	495.6	29.63	684.11
4	12.21	155.58	18.77	495.98	29.69	688.11
5	12.21	154.05	18.75	494.72	29.54	684.28
6	12.20	154.91	18.73	495.62	29.58	684.83
7	12.21	155.09	18.77	494.71	29.61	683.92
8	12.20	153.52	18.77	493.84	29.57	681.85
Ave	12.20	154.85	18.76	494.75	29.60	683.98
Std Dev	0.028	1.08	0.016	0.93	0.048	2.24
Theoretical	12.3		19.2		30.1	
Accuracy	0.8%		2.3%		1.7%	
Precision	0.2%		0.1%		0.2%	

46

CTA

SDT Calibration and Verification

- Calibrate upon initial installation
- Re-calibrate anytime the beam set, experimental heating rate, or purge gas is changed
- Types of calibration available:
 - Weight Calibration: (TGA weight signal)
 - DTA Signal Setup: Analyzing the Delta T signal data
 - Temperature (Melting point or curie point standards as in TGA. Commonly use melting point standards)
 - DSC Heat Flow
 - MDSC Reversing Heat Capacity (SDT 650)

1		
4	/	

47

SDT Calibration and Verification

- DTA signal:
 - Not required when using the SDT as a DSC-TGA
 - This run usually utilizes the same baseline run obtained for TGA Weight Calibration
- Heat flow and cell constant:
 - Based on analyzing the heat capacity curve for sapphire over the range 200 to 1500°C. Three experimental runs are required: two runs to generate the heat flow curve and another run to refine that calibration through cell constant calibration using a known metal standard (zinc, for example)
- MDSC Reversing heat capacity:
 - A heat capacity calibration curve is generated by running a sapphire sample over a desired temperature range using appropriate modulated conditions. The collected Reversing Heat Capacity curve is calibrated against the true value of the heat capacity of sapphire over the experimental temperature range

48

48

СТА

Instrument Hardware and Gas Selection Considerations

- Gas Delivery Module and Mass Flow Controllers
 - The gas 1 port purges both sample and balance areas
 - Gas 1 should be an inert gas (N2, He, Ar)
 - The gas 2 port is used when a different purge gas is required, or gas switching is used
 - Typically this is air or O2
 - Gas type is assigned to Mass Flow Controller in the Instrument section of the control software and chosen before on the setup page.

Gases Typically used on TGA/SDT

- Nitrogen inert, inexpensive and readily available
- Helium inert, commonly used on TGA-MS
- •Argon inert
- Air/Oxygen used when studying oxidative stability of materials, can
- sometimes improve resolution of weight loss events

50

ĊтÀ

Blending Gas Delivery Module

- For use with TGA 550,TGA 5500 and SDT 650
- Allows blending two gases as main sample purge for a test. Nitrogen, helium, argon, oxygen, air, carbon dioxide, carbon monoxide, and forming gas (a blend of 4% hydrogen with 96% nitrogen) may be blended

Baseline Performance Verification

- A good way to quantify how well the TGA is working
- Especially important for measuring small weight losses associated with volatilization or small amounts of residue
- Run clean, empty, tared pan, over temperature range of interest, at desired heating rate
- Plot weight in µg vs. temperature
- Dynamic drift should be less than 10 μ g for the Discovery TGA 5500, and Discovery TGA and less than 50 μ g on the Discovery TGA 550/55 & Q Series TGA's when using platinum pans and 20°C/min heating rate

57

ĆтÀ

Ċт

TGA: Factors Influencing Baseline

- Stability of table
- Hang down wire / beam condition
- Hang down tube condition
- Leveling of TGA
- Cleanliness of the furnace
- Purge gas flow rates

TGA: Sample Preparation

- Use brass tweezers to eliminate static effects
- Tare a clean sample pan before every run
- Distribute sample evenly over bottom of pan
- Liquid samples use hermetic pan with a pin-hole lid

CTA

TGA: Sample Pans - Types/Sizes	
Platinum Aluminum Ceramic (alumina)	Discovery series
50 & 100 μL 80 μL 100 & 230 μL	
Deep-walled pans are good for larger mass and low-der	nsity materials
	Q series
Platinum Ceramic (alumi	na)
Aluminum 50 & 100 µ∟ 100, 250 & 500	μ
68 100 μL	(TA

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Ċт

TGA: Environment Considerations Avoid areas near heater or air conditioner ducts Avoid tables with drawers or those near a door For optimum results, use a marble table

Experiment Setup	
 Experiments are created in the Running Queue or the Design View They are launched from the Running Queue! 	Experiments Incomplete Running Queue Design View (0) Empty
76	(TA

Experii	ment Setup	
 Sample info 	rmation is entered here	
	☆ Sample	
	Sample Name	
	Pan No. 1	
	Pan Type Platinum (100ul)	
	Operator	
	Project	
	Notes	
	➢ File Name: C:\Documents and Settings\All Users\Application Data\TA Instruments\TRIOS\Data\Default.tri	
77	TA	

Experiment Setup					
☆ Procedure					
Test Ramp ~ 💜					
Complete Segments					
Heating Rate 10 *C/min Final Temperature 150.00 *C					
Switch to gas 2 at 600 °C					
78					
	C TA				

Experiment Setup	
Advanced Beginning of Test: Start Experiment After Weight Stabilization Uncheck weight stabilization for volatile materials Uncheck for EGA to prevent background gases Air Cool Until Temperature Is Below 30.00 °C End of Test Delay 15.00 minutes	
79	TA

Segment Statements

- The logic of the instrument control software is based upon segment statements which the user enters during the design of the experiment
- These segments are executed during the experiment.

	Select Method Segments	
	Lt Jump	
	år Equilibrate	
	≵ ← Initial Temperature	
	🐉 Ramp	
	↓ → Isothermal	
	₿ ¶Step	
	4+ Increment	
	🕠 Heater PID	
	💱 Hi Resolution Ramp	-
	Resolution Sensitivity	
	n 😵 ElectroMagnet	
	S Event1	
80	The Event2	

Method Design: TGA Segment List •The Ramp segment heats or cools the sample Select Method Segments ÷ at a fixed rate until it reaches the specified 🗼 † Jump temperature, producing a linear plot of temperature versus time Equilibrate •The Equilibrate segment heats or cools the [Initial Temperature furnace to the defined temperature, stabilizes 🛃 Ramp the furnace at that temperature, then continues to the next segment 🚺 → Isothermal Ξ •The Select Gas segment controls the switching Step 1 of gas between Gas 1 and Gas 2 for an + Increment instrument with a gas delivery module. This segment is used to synchronize gas switching 🕡 Heater PID at a specific time or temperature in an Modulate Temperature experiment 82 Ćтà

,	a Descriptions
Segment	Description
	The Abort segment skips over the next segment when specified limit conditions are met.
	 If the limit is reached at the beginning of a segment, then that segment is skipped and method execution continues with the next segment.
Abort	 If the limit is reached during the execution of a segment, then the remaining portion of the segment is skipped.
Abort	NOTE: The Abort segment is generally followed by a Ramp or Isothermal segment.
	Example (DSC):
	1. Equilibrate at 200°C
	2. Abort next segment if mW>1
Balance Mass Flow	This segment is used to alter the rate of flow of the selected gas to the balance.
(Discovery TGA only) Example:
	Flow rate 50 mL/min
Blend Gas	Applicable to Blending GDM instruments only: The Blend Gas segment allows you to select the input gas for Channel A (Gas 1 or Gas 2), a percentage to blend with Channel B (Gas 3 or Gas 4), and which input Gas to use for Channel B.
Blend Gas	 Applicable to Blending GDM instruments only: The Blend Gas segment allows you to select the input gas for Channel A (Gas 1 or Gas 2), a percentage to blend with Channel B (Gas 3 or Gas 4), and which input Gas to use for Channel B. NOTE: Minimum controllable flow rate is 5 mL/min. Take this into account when specifying percentage. It may be necessary to increase overall sample flow.
Blend Gas	 Applicable to Blending GDM instruments only: The Blend Gas segment allows you to select the input gas for Channel A (Gas 1 or Gas 2), a percentage to blend with Channel B (Gas 3 or Gas 4), and which input Gas to use for Channel B. NOTE: Minimum controllable flow rate is 5 mL/min. Take this into account when specifying percentage. It may be necessary to increase overall sample flow. Example:

Segments and Descriptions			
Data 🕞 Data	The Data segment controls data collection during the experiment. If a Data segment is not used, data storage is automatically initiated by the first Ramp , Isothermal , or Step segment that appears in the method. Example: Data Storage: On		
Electromagnet (Discovery TGA only)	The Discovery TGA has a magnetic coil surrounding the furnace. The Electromagnet segment allows you to apply a magnetic field during an experiment so that temperature calibration using Curie point standards may be performed. Example: Electromagnet: On Ramp 10°C/min to 250°C		
Equilibrate	The Equilibrate segment heats or cools the furnace to the defined temperature, stabilizes the furnace at that temperature, then continues to the next segment. This segment does not automatically start data collection. Example: Equilibrate at 200°C		
S Event1 2 Event 1 / Event 2	The Event segment controls the external event relay through the event jack on the back of the instrument. This is used to synchronize control of additional hardware through the method. Example:		
84	Event 1: On		

Segme	ents and D	Descriptions	
	<mark>∦</mark> ← Initial Temperature Initial Temperature	The Initial Temperature segment heats or cools the furnace to the defined temperature, stabilizes the furnace at that temperature, then holds the temperature until the experiment is continued by clicking OK on the TRIOS dialog box, or by selecting Start on the instrument display or instrument keypad. This segment does not automatically start data collection. Example: Initial Temperature 200°C	
	<mark>å</mark> ⇒lsothermal Isothermal	The Isothermal segment holds the sample at the current temperature (as programmed by the previous segment) for a defined period of time. This segment automatically turns on data collection, except when preceded by a Data OFF segment.	
		Example. Isothermal for 10 min	
	Jump	The Jump segment instantly changes the set point temperature, causing ballistic changes in the sample temperature. This segment then allows the immediate execution of the next segment (which is usually the lsothermal segment). Note that large temperature overshoots may result from the use of this segment. This segment does not automatically start data collection.	
		Example:	
		Jump to 200°C	
	Mark End	The Mark End segment places a marker in the data for use by the data analysis programs. In general, markers provide quick parsing of data to separate experimental segments (i.e., the heat-cool cycle). Example:	
		Mark end of cycle 0	
	Mass Flow	The Mass Flow segment alters the rate of flow of the selected gas when an instrument is equipped with a Gas Delivery Module (GDM).	
		Example:	
	¥ [√] Modulate Temperature	Available for Modulated Instruments Only: This segment allows you to enter the modulation temperature amplitude and period (frequency) parameters that will be used with subsequent ramp or isothermal	
85	Modulate Temperature	segments. Example:	TA

What if I need help?

- TA Tech Tips
 - http://www.youtube.com/tatechtips
- TA Instruments Applications Helpline available from the TA website
 - http://www.tainstruments.com/support/applications/applications-hotline/
- Check out our Website
 - http://www.tainstruments.com/

87

ĆтÀ

