Overview

TA Instruments are used in research around the world across diverse fields and applications. Our blogs share industry insights, expert ideas, and real-world discoveries made with our instrumentation. Check back frequently for new blogs with up-to-date information and inspiration.

Filter by Technique

Filter by Applications

Material Analysis Techniques for Every Stage of Polymer Development
01/07/2025
Polymers are everywhere, from components making up the electronic device you’re reading this on to life-saving medical devices, energy efficient solar panels, and lightweight aero or auto components. Material scientists and engineers continue to improve high-performance polymers for strength, durability, and stability under demanding applications.
12/19/2024
In the world of material science, understanding the viscoelastic properties of materials is crucial for developing and optimizing products. Two key parameters in this context are storage modulus (E' or G') and loss modulus (E" or G"). These parameters provide insights into a material's stiffness and damping characteristics, respectively, which are essential for applications ranging from polymers and pharmaceuticals to batteries and composites.
Rheo-IS Blog Image
12/11/2024
Electrode slurries are paste-like mixtures made up of active materials, conductive additives, and a binder. The conductive additives must be electrically conducted to the current collector. However, binder is necessary for getting the active materials to stick together and adhere to the current collector.
11/27/2024
Differential Scanning Calorimetry is a thermal analysis technique commonly used to characterize materials across a broad array of applications including chemistry, biochemistry, pharmaceuticals, polymers, and more. Differential Scanning Calorimetry (DSC) measures the heat flow in a material as it is heated or cooled over a specified temperature range.
11/05/2024
Isothermal Microcalorimetry (IMC) is a highly sensitive analytical technique that measures the heat flow in chemical and physical processes under constant temperature. IMC enables the precise detection of thermal reactions, including phase transitions, binding events, and metabolic processes, making it invaluable in fields such as pharmaceuticals, materials science, and battery research.
11/04/2024
A testament to the march of scientific inquiry, thermogravimetry emerged through the integration of three individual inventions in the 19th and 20th centuries: the electric furnace, the thermocouple, and the microbalance. As a cornerstone of material science, chemistry, and various other industries, thermogravimetric analysis (TGA) has since developed in leaps and bounds. Today, TA Instruments are leading the way in TGA, and we welcome you to join us as we explore the workings and applications of this groundbreaking technique.
10/28/2024
Powders are a big part of everyday life, from baking and laundry to cosmetics and pharmaceuticals. Understanding powder rheology—how powders flow and deform—is crucial for optimizing their use in various applications. This knowledge helps industries maintain consistency and product quality.
10/11/2024
Rheology is a notoriously complex field, combining mathematics and physics to characterize materials. For inexperienced users, rheology can seem like a massive challenge. Luckily, new technology simplifies rheology down to its core so you can get essential measurements without difficult training, measurements, or calculations.
09/30/2024
If you’re working with materials that can be flowed, for example within pharmaceutical, food, cosmetics, or petrochemical industries, it’s likely that there is a viscometer in the laboratory that is the go-to instrument for formulation testing or QA purposes. However, does this viscometer give you the whole picture and fully meet all your needs?
09/26/2024
Discover the RS-DSC from TA Instruments, the ultimate high throughput DSC for rapid thermal analysis. Learn more about its precision, speed, and capabilities.