Material Analysis for Bioplastics Quality Assurance and Degradation

What are bioplastics? How can plastic manufacturers use them to improve the environmental impact of their products? With so many emerging green technologies, producers and consumers need to differentiate between greenwashing1 and genuine advancements. Furthermore, if a new development is deemed environmentally beneficial, all stages of the plastics supply chain, especially converters, must then learn how to incorporate the new technology without undermining their process or products.

How Sustainable Polymer Development is Supported by Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) is a technique to measure the response of materials when they are subjected to dynamic or cyclic forces. Typically, dynamic mechanical analysis involves looking at the elastic and viscous response of the material when it is under a small oscillating load that probes the molecular structure’s response to the perturbation . Other variables, such as temperature, time and frequency may be changed as part of the testing to characterize how the material performs under different environmental conditions.

Optimization of Catalytic Reactions by High-Pressure TGA

Catalytic reactions are everywhere: from plastics and bread to over 90% of all chemicals worldwide, countless goods and materials are manufactured with the aid of catalysts.1 Catalysts are substances that speed up sluggish chemical reactions. Faster reactions are more technologically and economically competitive. Furthermore, optimized catalysts offer a huge potential to reduce energy and resource consumption and lower carbon dioxide emissions.

What is Differential Scanning Calorimetry?

Differential scanning calorimetry is an analytical technique used to measure the amount of heat released or absorbed by a sample during heating or cooling over a range of temperature. As well as being used to characterize the thermal properties of a material, a differential scanning calorimeter is used to determine the temperature at which particular phase transitions occur, including glass transition temperature, fusion and crystallization events.

What are Rheometry and Rheology?

Whether researchers are optimizing the texture of yogurt or studying adhesives’ curing, rheometry helps us understand materials and predict their behavior. Rheometry measures the amount of deformation a material or liquid undergoes when a force is applied. The combination of stress, strain and shear behavior forms the basis of rheology, the science of the deformation of materials.