Understanding Storage and Loss Modulus with TA Instruments

In the world of material science, understanding the viscoelastic properties of materials is crucial for developing and optimizing products. Two key parameters in this context are storage modulus (E’ or G’) and loss modulus (E” or G”). These parameters provide insights into a material’s stiffness and damping characteristics, respectively, which are essential for applications ranging from polymers and pharmaceuticals to batteries and composites.

10 Questions to Ask Yourself for Successful DSC Use

Differential Scanning Calorimetry is a thermal analysis technique commonly used to characterize materials across a broad array of applications including chemistry, biochemistry, pharmaceuticals, polymers, and more. Differential Scanning Calorimetry (DSC) measures the heat flow in a material as it is heated or cooled over a specified temperature range.

What is Thermogravimetric Analysis?

A testament to the march of scientific inquiry, thermogravimetry emerged through the integration of three individual inventions in the 19th and 20th centuries: the electric furnace, the thermocouple, and the microbalance. As a cornerstone of material science, chemistry, and various other industries, thermogravimetric analysis (TGA) has since developed in leaps and bounds. Today, TA Instruments are leading the way in TGA, and we welcome you to join us as we explore the workings and applications of this groundbreaking technique.

What Your Material Specification Sheet Doesn’t Tell You

When it comes to selecting materials for your next innovative product, the material specification sheet is likely the first place that you will turn. This document provides core properties measured by the manufacturer and serves as an essential tool for supplier verification and new product development. However, while these sheets are reliable and provide a standard method for comparison, they often fail to tell the whole story.

Composites Industry Blog

Overcoming Composites R&D Challenges with Material Analysis

The composites market is evolving fast. Global market projections indicate a 10.8 % growth by 2028, driven by the demand for composites across industries looking for materials with superior performance at reduced weight and cost. This blog explores how advanced material analysis can enhance R&D and manufacturing processes in the composites market, ultimately leading to financial savings and increased efficiency.

Close up of granulated plastic waste on a recycling plant for pl

Characterization Considerations when Sourcing PCR

Against the backdrop of a plastic waste crisis, the global demand for plastic is set to quadruple by 2060. This has driven a shift toward sustainability and away from linear use models of plastic production. Post-consumer resin (PCR) has emerged as a key player in circular economy initiatives, though ensuring the quality and performance of PCR requires several characterization considerations.

Solving Problems for the Next Generation

The recent release of our 2022 Environmental, Social, and Governance (ESG) report demonstrates a continued commitment to leaving the world better than we found it. The pursuit of the goals outlined in this report remains a top priority for our company and this year’s edition reflects both our current focus areas and future ambitions.

The Road to U.S. Electric Vehicle Battery Production

Consumer interest and sustainability goals are driving soaring demand for electric vehicles. The U.S. aims for electric vehicle sales to reach 50% of the total market by 2030, yet 99% of the raw and component materials for EV batteries are produced externally.1, 2 Sourcing foreign-made materials and batteries has already created challenges in the industry. Russia’s invasion of Ukraine led to market instability that caused the price of nickel, a key battery material, to skyrocket in March 2022.